
COMBINING IMAGE-SPACE INSTANT RADIOSITY
AND PHOTON MAPPING FOR REAL-TIME DIFFUSE

INDIRECT ILLUMINATION AND CAUSTICS

LE HOANG QUYEN
BEng

A DISSERTATION SUBMITTED FOR THE DEGREE OF MASTER OF
COMPUTING

DEPARTMENT OF COMPUTER SCIENCE
NATIONAL UNIVERSITY OF SINGAPORE

2014

Declaration

I hereby declare that this dissertation is my original work and it has been written
by me in its entirety. I have duly acknowledged all the sources of information
which have been used in the dissertation.

This dissertation has also not been submitted for any degree in any university
previously.

Le Hoang Quyen
August 2014

ii

Acknowledgments

I would like to acknowledge Professor Kok-Lim LOW, Ph.D., for his advice for the
completion of this dissertation. I am also very grateful for the cooperation with
Mr. Hua Binh Son. The discussions with Son helped improve my understanding
of concepts, current research trends, as well as ideas and directions for my topic.

iii

Abstract

Global illumination greatly improves the realism of visual applications. Although
frequently being used in off-line rendering, it is difficult to achieve in real-time
applications. Several techniques has been invented to produce such effect in high
performance frame rate, but most only consider diffuse inter-reflection and ignore
visibility, as well as sacrificing accuracy for speed. This dissertation introduces a
hybrid image-space technique being able to illustrate diffuse indirect illumination
and caustics in real-time. This technique combines an Instant Radiosity based
algorithm that supports only diffuse inter-reflection with a Photon Mapping
based approach to render the caustic effects. For fast approximations, the Photon
Mapping approach uses image-space informations to trace photons and spread
their energy to nearby pixels. Ray-geometry intersections are solved on a per-
fragment basis by using per-pixel linked lists. The advantages of the technique
are supporting dynamic scenes without pre-computing any accelerated structures
such as kd-tree, and it runs entirely on the GPU.

iv

Contents

List of Figures vii
List of Tables x
List of Algorithms xi

1 Introduction 1
1.1 Introduction 1
1.2 Dissertation’s structure 4

2 Related works 5
2.1 The Rendering Equation 5
2.2 Instant Radiosity and Virtual Point Lights 7

2.2.1 Instant Radiosity 7
2.2.2 Reflective Shadow Maps 8
2.2.3 Imperfect Shadow Maps 11
2.2.4 Multi-resolution splatting for indirect illumination 12

2.3 Photon Mapping 14
2.3.1 Original Photon Mapping algorithm 14
2.3.2 Image-space Photon Mapping 15

2.4 Other works 19

3 The hybrid technique 21
3.1 Overview 21
3.2 Diffuse inter-reflections using Instant Radiosity 22

3.2.1 VPLs sampling 22
3.2.2 Multi-resolution shading 23

3.3 Caustics using Photon Mapping 26
3.3.1 Photons’ initial bounces 26
3.3.2 Photon tracing on screen-space 30

4 Results 37
4.1 Caustic Ring scenes 37

4.1.1 Simple scene 37
4.1.2 Occluded ring 37
4.1.3 Three bunnies and a ring 39

4.2 Water room 40
4.3 Crytek’s Sponza 41

v

Contents vi

5 Conclusion 48
5.1 Limitations and future improvements 48

References 50

List of Figures

1.1 Direct illumination only (left) and indirect illumination (right). 1
1.2 Caustics (A & B & C regions) caused by light reflected on a metal ring. 2
1.3 A sparse set of photons gives noises to the rendered image. Courtesy of Lavignotte et al.

[LP03]. 3

2.1 Solid angle Ω subtended by surface S. 5
2.2 Radiance exits surface A through direction ω. 6
2.3 BRDF describes ratio of reflected radiance in direction ω0 to irradiance from direction

−ωi . 6
2.4 Virtual Point Lights ("shiny" dots) are created when particles shot from original light

source collide with surfaces. 8
2.5 From left to right: depth, world space position, normal, flux in RSM obtained from light

view, and rendered scene from eye view. 9
2.6 Two VPLs P1 and P2 have projected counterparts x1 and x2 on RSM. 10
2.7 Two VPLs L1 and L2 are chosen to illuminate pixel P1 since their projected pixels (blue

ones) are closest to P1’s (green one) on RSM. 10
2.8 Left: two ISMs rendered from two white VPLs’s respective view. Right top: many

low-resolution ISMs with holes. Right bottom: corrected ISMs using pull-push. Courtesy

of Ritschel et al. [RGK+08]. 12
2.9 Classic shadow map vs ISM with holes. Courtesy of Ritschel et al. (SIGGRAPH 08 Talk). 12
2.10 Multi-resolution regions: Coarsest level is separated by blue lines. Finer one uses green

lines. Finest level is divided by yellow lines. 13
2.11 Final image without interpolation between disjoint regions. 13
2.12 Left: multi-resolution images. Right: One image contains all layers. Courtesy of Nichols

et al. [NSW09]. 14
2.13 There are several photons in the scene, which are denoted by dot shapes. Only yellow

ones are used to calculate radiance at x (blue cross). The gathering sphere is illustrated

by a circle. 15
2.14 The reflected yellow ray is rasterized as line using GPU. There are two intersection points

detected at red fragments. This is because the ray’s red fragments have identical depth

values compare with the sphere’s ones stored in depth buffer. 16
2.15 A scenario where even 8 depth layers are not able to store the green sphere. The testing

then incorrectly detects red square at the top to be the first collision between the yellow

ray and the geometry. 16

vii

List of Figures viii

2.16 Computing intersection by iterations in image-space. The first guess is point A obtained

from the direction of the ray. After one iteration, approximated intersection B’ is obtained,

then C’ after next iteration, and so on. Courtesy of Yao et al. [YWC+10]. 17
2.17 Wrong intersection point due to occluded geometry. 18

3.1 Overview of the method. 21
3.2 From left to right: VPL’s grid sampling, circle sampling and RSM from a spot light. 23
3.3 From left to right: Stencil marked multi-resolution regions and their shaded result. The

white pixels on the left image correspond to the valid regions. 25
3.4 Multi-resolution interpolation process. 25
3.5 The mipmap of a 4x4 mask texture corresponding to 4x4 RSM. Interestingly, hardware

generated mipmap process computes a lower level pixel by averaging its 4 higher level

pixels. Thus, lowest mipmap level will actually contain the percentage of specular pixels

in highest resolution RSM, which is 0.5625, so the number of specular pixels is 0.5625 *

16 = 9. 27
3.6 From left to right: Uniform sampling positions, our sampling method’s positions, mask

texture, and RSM. The mask texture is represented in color mode, where black and white

correspond to zero and one respectively. 27
3.7 Random reflection direction (yellow) can be expressed in (θ, φ) which is a spherical

coordinates in mirror reflection space. 29
3.8 Pixel P1 has a linked list of 4 fragments: F1 & F2 from red object, F3 & F6 from blue

object. Similarly, Pixel P2 has a list of 2 fragments: F4 & F5 both from blue object. 30
3.9 Linked list construction. Yellow object is rasterized first, the red object is second. The

process can capture more than one depth value at overlapped locations between 2 objects.

Note: only "next" pointers are shown in the global buffer, other data’s members such as

depth, normal are omitted. 32
3.10 The pink object at the bottom reflects the light from the light source and causes three

caustics rays. These are processed by the geometry shader, which computes the reflected

rays and generates line primitives. The rendering of these lines generates the image

shown at the bottom. Red, green and blue pixels indicate hits with an object, and grey

cells indicate fragments that have been skipped in the fragment shader. White cells are

fragments having never been rendered. Courtesy of Krüger et al. [KBW06]. 33
3.11 Red fragment is wrongly detected as intersection between the reflected ray and the blue

object due to pixelating error. 33
3.12 Inaccurate intersection can still occur on a very thin object which has multiple surfaces

close to each other. 33
3.13 From left to right: photon incident positions, splatting result without weighting and with

Gaussian weighting. 35
3.14 From left to right: Low resolution caustics irradiance and its upsampled result. 36

4.1 Simple ring scene. 38

List of Figures ix

4.2 Occluded ring scene. The image (b) shows light leaking due to missing of the ring’s

platform in the depth layers. The image (d) shows the correct photons’ locations using

per-pixel linked list tracing method. 40
4.3 Bunnies scene. 41
4.4 Water scene. 42
4.5 Water scene 2. 43
4.6 Sponze scene 1. 44
4.7 Sponze scene 2. 45
4.8 Sponze scene 3. 47

List of Tables

4.1 Statistics of the simple ring scene. 38
4.2 Statistics of the occluded ring scene. 39
4.3 Statistics of the bunnies scene. 39
4.4 Statistics of the water room scene. 43
4.5 Statistics of the Sponza scenes. 46

x

List of Algorithms

2.1 Gathering step to shade every screen pixel with indirect lighting. 9

3.1 Multi-resolution regions splitting. 24
3.2 Multi-resolution interpolation. 26
3.3 Mirror reflection space’s axes calculation. 29
3.4 Per pixel linked list insertion in fragment shader. 31
3.5 Intersection test using depth linked list in fragment shader. 34

xi

Chapter 1
Introduction

1.1 Introduction

As photo-realistic is always an ultimate goal for computer graphics, only limited range of
real life phenomena can be simulated in real-time and interactive frame rate. With Graphics
Processing Units (GPUs) become more powerful, more advanced effects has been made
possible while retaining acceptable frame rate. Among those, global illumination (GI) has
been increasingly popular in games and real-time applications. This effect does not only
account the direct light sources when displaying the illumination of an object, but also
considers its surrounding environment.

There are two main components of GI, direct illumination and indirect illumination. Direct
illumination appears on an object based on its relation with light sources. It can be
implemented efficiently and runs very fast on today hardwares. Indirect illumination, on the
other hand, is the result of multiple light bounces between objects. One example is that
when the light is reflected on a wall having red color and reach surrounding objects, these
objects will have similar red color on them (figure 1.1). There are three common indirect
illumination effects: diffuse inter-reflection which is a result of light bounces between diffuse
surfaces, caustics happening when light rays reflect or refract from a surface and focus in
only certain areas of receiving objects, and glossy resulting from indirect light arriving on
shiny surfaces after being reflected between other diffuse or shiny surfaces.

Figure 1.1: Direct illumination only (left) and indirect illumination (right).

1

Chapter 1. Introduction 2

Figure 1.2: Caustics (A & B & C regions) caused by light reflected on a metal ring.

Although GI has been featured in off-line rendering for a long time, there is still no perfect
solution even today for real-time counterpart. Since these applications typically have to
produce an image in a fraction of second, full global illumination is still not feasible. The
involvement of sampling a large number of light directions and recursive tracing their bounces
between objects make this GI approach too complicated to be computed in short amount of
time.

Several algorithms have been pioneered in attempts to produce real-time indirection il-
lumination. They usually rely on some approximations or assumptions such as ignoring
indirect visibility in order to achieve plausible GI. Due to low frequency nature of diffuse
inter-reflection, it can be generated quickly in reasonable quality. While the other two remain
being challenges due to requiring high number of light path samplings.

This dissertation investigates and evaluates a new hybrid image-space method to render
two of the indirect illumination effects in real-time: diffuse inter-reflection and "middle" to
slightly high frequency caustics. This method is image-space based and thus have very little
dependence on scene complexity. It supports fully dynamic scene without pre-computing
data structures, which means the scene can be rendered completely from scratch every frame.

• In first step, a multi-resolution Instant Radiosity shading approach is utilised to render
diffuse effects. This approach is currently one of the fastest indirect diffuse algorithms,
and it is screen-space based.

• In second step, a screen-space Photon Mapping method is applied to accumulate caustics
to the diffuse illuminated scene from first step. This method has two sub-passes as
traditionally:

1. The Photon tracing pass employs the following strategy: the photon rays are
rasterized as lines and collisions are test against per-pixel linked lists representing
the scene’s geometry.

Chapter 1. Introduction 3

2. The second pass is finding energy contribution of photons to their nearby pixels.
To do this, a splatting method is adopted, which renders oriented disks around
photons’ hit points and spreads energy to every screen-space pixel residing within.

Even though Photon Mapping methods excel at rendering caustics and are capable of
simulating a wide range of effects, they are not efficient to simulate diffuse indirect illumination.
The reflectivity nature of diffuse surfaces causes the photons to be scattered all over the
scene. If only a sparse set of photons are traced, visible noises can occur (figure 1.3), while a
large number increases the performance cost. In contrast, caustics have high concentration of
photons on certain areas, hence illumination discontinuities are hard to notice even if there
are low number of traced photons. Therefore, in our method, we replace diffuse indirect
lighting using photons part by an Instant Radiosity technique while keeping the caustics
illumination of Photon Mapping method. Instant Radiosity uses Virtual Point Lights (VPLs)
to illuminate the diffuse surfaces, however, the number of VPLs is at least one order of
magnitude lower than photons’. Finally, in practice, the errors occur during photons tracing
are usually averaged out when accumulating contributions of photons close to each other,
thus we can approximate this step instead of performing the accurate ray tracing procedure.
Image-space Photon tracing methods have an advantages of simple implementation, easy
integration into existing OpenGL/Direct3D rendering frameworks, and no pre-computation
since they can use the scene’s geometry information in images such as depth buffer to
calculate photons’ intersections. Nevertheless, one image is not sufficient to store information
of the entire scene, thus existing techniques uses multiple images in hope that they can cover
the majority parts of the scene. These images are obtained by rendering the scene repeatedly
from different perspectives. With the general purpose power of modern GPUs, our method
employs GPU per-pixel linked lists to represent the geometry and it is possible to capture
the entire scene in one rendering pass.

Figure 1.3: A sparse set of photons gives noises to the rendered image. Courtesy of Lavignotte et
al. [LP03].

Chapter 1. Introduction 4

1.2 Dissertation’s structure

In Chapter 2, we will review some existing GI algorithms, most of them are real-time/interactive
focused methods. Chapter 3 will explain our technique in detail. Some results for evaluating
our technique are presented in Chapter 4. Finally, conclusions and future improvements are
discussed in Chapter 5.

Chapter 2
Related works

2.1 The Rendering Equation

Before going through a list of GI algorithms, it is important to understand GI problem first.
This section will explain some relevant GI related radiometry concepts.

Solid angle (Ω) subtended by a surface S is a surface area of a unit sphere covered by
projection of S on the sphere (figure 2.1). We often use the term dω to denote a differential
solid angle at direction ω from the sphere’s center. Radiant flux (Φ) is an amount of
energy/power flowing through a surface per unit time. Irradiance (E) is area density of flux
arriving at a surface (A):

E =
dΦ

dA
(2.1)

Radiance is the most important GI concept, it is defined as flux density per unit solid angle,
per unit projected area.

L =
dΦ

dω dA cos θ
(2.2)

Where θ is an angle between ω and and surface normal.

Figure 2.1: Solid angle Ω subtended by surface S.

5

Chapter 2. Related works 6

Figure 2.2: Radiance exits surface A through direction ω.

Figure 2.3: BRDF describes ratio of reflected radiance in direction ω0 to irradiance from direction
−ωi .

The last term is Bi-directional Reflectance Distribution Function (BRDF) which describes
how much radiance reflected from a surface point x through direction ω0 due to incident
radiance at that surface point from direction -ωi. Let Lr be the reflected radiance and Li be
the incident radiance, BRDF is given by the following formula:

f(x, ω0, ωi) =
dLr(x, ω0)

Li(x, ωi) cos θi dωi
=

dLr(x, ω0)

dE(x, ωi)
(2.3)

Given these definitions, to simulate the Global Illumination’s reflection model, we need to
measure the radiance coming to our eye from every surface point in the scene by the following
Rendering Equation:

Lr(x, ω0) =

∫
Ωx

f(x, ω0, ωi) Li(x, ωi) cos θi dωi (2.4)

Where ω0 is the direction from the surface point x to the eye. The equation integrates over a
hemisphere at x oriented toward its normal vector, gathering all incident radiance Li(x, ωi)
which are reflected from light sources or other surrounding surface points. If only diffuse
indirect lighting toward the eye is considered, equation 2.4 can be rewritten as:

Chapter 2. Related works 7

Lr(x, ω0) =
N∑
i=1

f(x, ω0, ωi) Li,l(x, ωi) cos θi dωi +

p(x)

π

∫
Ωx

Li,d(x, ωi) cos θi dωi +

p(x)

π

∫
Ωx

Li,c(x, ωi) cos θi dωi

(2.5)

Lr(x, ω0) =
N∑
i=1

f(x, ω0, ωi) Li,l(x, ωi) cos θi dωi +

p(x)

π

∫
Ωx

Li,d(x, ωi) cos θi dωi +

p(x)

π

∫
Ωx

d2Φi,c

dAi

(2.6)

Where p(x) is diffuse reflection coefficients of the surface. Li,l(x, ωi) is radiance via direct
lighting from a light source in direction ωi. Li,d(x, ωi) is indirect radiance via lighting
reflected diffusely at least one on other surfaces. Li,c(x, ωi) is caustic radiance caused by
specular reflection on another surface point.

In many cases, the integrations can be estimated by Quasi-Monte Carlo method which
accumulates irradiance over a finite number of directions obtained by sampling randomly
with probability density function pdf(ω):

∫
Ωx

f(x, ω0, ωi) Li(x, ωi) cos θi dωi ≈
1

N

N∑
i=1

f(x, ω0, ωi) Li,l(x, ωi) cos θi
pdf(ωi)

(2.7)

2.2 Instant Radiosity and Virtual Point Lights

2.2.1 Instant Radiosity

Keller presented Instant Radiosity in 1997 [Kel97]. This algorithm first shoots N particles
from original light source at quasi-random directions. VPLs are created at every collision
location between the particles and the scene’s surfaces. These VPLs will be used as secondary
light sources to illuminate the scene. After first collision with the scene’s surface, each
particle is determined to be terminated or bounced off the surface based on a probability
calculated as:

Chapter 2. Related works 8

Figure 2.4: Virtual Point Lights ("shiny" dots) are created when particles shot from original light
source collide with surfaces.

p =

∑K
k=1 pd,k |Ak|∑K

k=1 |Ak|

Where K is number of surface elements in the scene, each has area Ak and average diffuse
reflectivity pd,k.

If bouncing is chosen, the particle continues travelling and bouncing off several surfaces
until it is terminated. There should be pN particles remain after first-bounce, piN after ith
bounce.

The original implementation uses multiple rendering passes to accumulate lighting from
multiple VPLs. Shadow Mapping can be used to check occlusions between VPLs and
illuminated surfaces. This algorithm is more suitable for diffuse scenes. Glossy reflections
can be generated with millions of VPLs, while caustics are nearly impossible. Caustics are
results of lighting coming from specular reflections then arriving at diffuse surfaces, placing a
VPL at a specular surface then using it to illuminate the scene will result in zero evaluation.

2.2.2 Reflective Shadow Maps

Dachsbacher et al. [DS05] proposed a real-time variant of Instant Radiosity in 2005, which
supports once-bounce VPLs only. By using multi render targets, they extends traditional
shadow map to store more information in light view. Besides depth value, there are world
space position, normal and reflected flux of every pixel rendered from light view. This
extension called Reflective Shadow Map (RSM), see figure 2.5. Every pixel in RSM is then
considered a VPL (figure 2.6).

To illuminate the scene, direct lighting is rendered to geometry buffer (G-buffer) first. It is

Chapter 2. Related works 9

Figure 2.5: From left to right: depth, world space position, normal, flux in RSM obtained from
light view, and rendered scene from eye view.

then combined with the indirect illumination computed by a gathering step accumulating
contribution of VPLs in RSM to every G-buffer pixels. This process can be illustrated by
the pseudo-code 2.1.

Algorithm 2.1: Gathering step to shade every screen pixel with indirect lighting.

1 for every pixel in G-buffer p do

2 c ← color of p

3 L ← subset of pixels in RSM

4 for every l in L do

5 c += contribute(l, p)

6 end

7 end

Suppose number of VPLs chosen to lighten the scene is L, number of visible pixels stored in
G-buffer is P, then the complexity of the gathering step is O(L * P). Current hardwares still
cannot run efficiently if L is too high, thus it is unwise to use every VPL in RSM (which
usually has a size of 512x512 or larger). At each G-buffer pixel p whose projected position
on RSM is x, the original algorithm chooses a random subset of VPLs that are near x in
RSM (figure 2.7). This is based on an assumption that if two projected points are close to
each other on RSM, then their world space positions are likely to be close too. In the paper,
L = 400 VPLs are randomly sampled around the pixel’s projected RSM position.

One important thing to note is that this algorithm ignores visibility between VPLs and

Chapter 2. Related works 10

Figure 2.6: Two VPLs P1 and P2 have projected counterparts x1 and x2 on RSM.

Figure 2.7: Two VPLs L1 and L2 are chosen to illuminate pixel P1 since their projected pixels
(blue ones) are closest to P1’s (green one) on RSM.

shaded pixels when calculating contributions. This is because visibility checking would
require a complex ray tracing process which is still not feasible in real-time. Despite all of
this, the indirect lighting computation is still too expensive to be done at every pixel in
interactive frame rate. One additional optimization of the technique is rendering the indirect
lighting in low-resolution buffer (typically 64x64), then upsampling it to full-resolution in
final step.

This technique shares the same shortcomings as original Instant Radiosity’s, caustics and
glossy are not possible since number of usable VPLs is quite low. Furthermore, the sampling
method for VPLs is too random, leading to inefficient memory accesses on GPUs.

Chapter 2. Related works 11

2.2.3 Imperfect Shadow Maps

Ritschel et al. [RGK+08] improved Reflective Shadow Maps by Imperfect Shadow Maps.
They determine visibility between a VPL and a eye view’s pixel by using shadow map
rendered from the VPL’s view. However, rendering accurate shadow maps for hundreds of
VPLs is impractical for interactive purpose. Thus, the technique only uses a point based
approximate representation of the scene to create shadow maps (it’s the reason that each
map is called Imperfect Shadow Map or in short, ISM).

Initially, in preprocessing step, to create the point based representation, a subset of the
scene’s mesh triangles are randomly selected with probabilities proportional to the their
areas. Then, points are placed on random positions in these chosen triangles. These points
can be transformed during runtime to support dynamic scenes.

During ISMs creation, each map does not need to contain the whole scene. Instead, the
representing points are split and randomly distributed to different ISMs. These points are
rendered to each map by projecting parabolically the point primitives. The ISMs are low
resolution and can be contained in one big texture.

Since points are randomly sent to ISMs, holes will appear in each map (figure 2.9). The
paper uses pull-push approach presented in [MKC07] to fill the holes. The first step is pull
phase in which the ISM is scaled down to several levels (similar to mipmapping). The second
step is push phase which fills the holes at each level by interpolating values from coarser
level.

The rest of the algorithm is similar to RSM, VPLs’ contributions are computed at each pixel,
visibility information from respective ISMs can be used to reject obscured VPLs. To support
multiple bounces, the algorithm stores VPLs in each ISM, which can now be called Imperfect
Reflective Shadow Map (IRSM). Important sampling can be used to sample second-bounce
VPLs from these IRSMs. Then, the same steps can be applied to render second-bounce
lighting.

There are several disadvantages of this technique. First, it requires preprocessing which
may be a hindrance during design time, as any modification to the scene can lead to re-
preprocessing of the point representation. Second, the visibility checking does not use precise
geometry information of the scene, hence complex scenes would have very inaccurate indirect
shadows. Lastly, even though an important sampling is used to provide better VPLs selection
compare to original RSM algorithm, they are only sufficient to produce slight caustics and
glossy effects.

Chapter 2. Related works 12

Figure 2.8: Left: two ISMs rendered from two white VPLs’s respective view. Right top: many
low-resolution ISMs with holes. Right bottom: corrected ISMs using pull-push. Courtesy of Ritschel
et al. [RGK+08].

Figure 2.9: Classic shadow map vs ISM with holes. Courtesy of Ritschel et al. (SIGGRAPH 08
Talk).

2.2.4 Multi-resolution splatting for indirect illumination

Even with relative small number of VPLs (hundreds to thousands), gathering step at every
screen pixel still has a high computational cost. The original RSM technique proposes an
upsampling strategy which renders the indirect illumination to low resolution frame buffer
first, then upscales it by interpolation. Places with high-frequency illumination such as
corners are rendered at full resolution and combined with the upscaled image. This can leads
to a very blurry image if the low resolution is too small. Nichols et al. [NW09] described a
more sophisticate method in their paper, in which they used a multi-resolution approach.
Instead of rendering the indirect illumination image at only two resolutions: low and high,
they split it into several regions at various resolutions, then each region is treated as one
pixel to be shaded, dramatically reduce number of pixels in the gathering step.

Starting by dividing the full-resolution frame buffer into a coarsest grid of regions (let say
16x16 in size). If there are regions where certain depth or normal discontinuities occur, each
will be subdivided into 4x4 finer regions. Similarly, the finer regions may also be subdivided
further, even to the finest level where each region covers exactly one pixel in the frame buffer
(figure 2.10).

Chapter 2. Related works 13

Figure 2.10: Multi-resolution regions: Coarsest level is separated by blue lines. Finer one uses
green lines. Finest level is divided by yellow lines.

Figure 2.11: Final image without interpolation between disjoint regions.

One major problem is that the rendered frame buffer will be "blocky" as seen in figure 2.11,
because of disjoint shaded regions. To solve that, the algorithm then performs interpolation
progressively between regions within a same level and between coarser level and its next
finer level. The interpolation starts from coarsest level, until the final image at finest level is
produced.

The first implement of the technique uses Geometry Shader to subdivide the frame buffer
and store the list of multi-resolution regions in a vertex buffer. Then for each VPL, the
process calculates the contribution for each region and renders into respective layer in a
multi-resolution buffer. For example, a region in 16x16 grid will be rendered to a pixel in
16x16 layer. The result is additive blended with previous VPLs’ contributions. This is called
splatting approach. The final step is interpolating between layers.

Later implement [NSW09] uses stencil-based approach. They pack all layers into single big
texture (figure 2.12). The stencil buffer is utilised to mark those pixels in each layer that will
cover valid regions. Finally, those marked pixels will be shaded by gathering VPLs’ influence
(as opposed to splatting method in previous implementation).

Chapter 2. Related works 14

Figure 2.12: Left: multi-resolution images. Right: One image contains all layers. Courtesy of
Nichols et al. [NSW09].

This multi-resolution technique is only suitable for diffuse scenes, since high-frequency
lighting such as glossy and caustics requires more accurate frame buffer’s splitting. Even
worse, different VPLs will need different frame buffer’s division because of high-frequency
change of pixel’s illumination. Thus, the splitting must be performed multiple times during
rendering, once for each VPL. This would severely reduce performance of the algorithm.
Visibility is also omitted in indirect lighting calculation.

2.3 Photon Mapping

2.3.1 Original Photon Mapping algorithm

Jensen [Jen96] invented classic Photon Mapping which shares some similarities with Instant
Radiosity method. In first pass, particles (called photons) are emitted from the lights.
Russian roulette is used to determine the survival of a photon at bouncing point, if reflection
is determined, the photon will be reflected and continue to be traced. At every bouncing
point, photon is stored in a Photon Map which records its incident direction and power.
However, they aren’t VPLs like those in Instance Radiosity techniques.

In second pass, equation 2.4 is approximated as:

Lr(x, ω0) =

∫
Ωx

f(x, ω0, ωi)
d2Φi

dAi
≈

N∑
i=1

f(x, ω0, ωi)
∆Φ(ωi)

∆A
(2.8)

Where A is a gathering area, ∆Φ(ωi) is power of a photon within that area and its incident
direction is −ωi. Intuitively, the algorithm uses power of N nearest photons to estimate
the exitant radiance at x (figure 2.13). The more photons are used, the more accurate the
formula 2.8 becomes. Based on an assumption that surface is flat around x, A could be
calculated as an projected area of the gathering sphere with radius r:

A = πr2

Chapter 2. Related works 15

Figure 2.13: There are several photons in the scene, which are denoted by dot shapes. Only yellow
ones are used to calculate radiance at x (blue cross). The gathering sphere is illustrated by a circle.

If number of photons are low, the estimation can be blurry at the edges. To reduce the
artifacts, a filtering method such as Gaussian falloff function can be applied to weight the
contribution of photons based on their distance to the surface point x.

Traditional implementation used kd-tree to locate nearest photons. To render caustics,
photons bounced from specular surfaces are stored in a separate Photon Map. This map
typically contains much higher photons than the global map storing regular photons.

2.3.2 Image-space Photon Mapping

2.3.2.1 Interactive Screen-Space Accurate Photon Tracing on GPUs

As Photon-Geometry intersection test is still computational expensive for interactive applica-
tions, especially in a scene where ther are a lot of triangles. Krüger et al. [KBW06] proposed
a screen-space approximate intersection test by using depth buffer. First, the photon ray
is projected onto screen-space by utilising hardware rasterized line. Afterwards, at every
fragment inside the rasterized ray, the intersection is detected if the fragment’s depth is
nearly the same as the respective value in screen-space depth buffer (figure 2.14).

Since there is no guaranteed order of Fragment Shader executions on GPUs, it is not possible
to terminate the process upon detecting the nearest intersection. Thus, the test has to be
divided into two passes. First pass records all intersections between the ray and the depth
buffer. Second pass will find the intersection closest to the ray’s origin.

Chapter 2. Related works 16

Figure 2.14: The reflected yellow ray is rasterized as line using GPU. There are two intersection
points detected at red fragments. This is because the ray’s red fragments have identical depth values
compare with the sphere’s ones stored in depth buffer.

Compare to linear search which can exit the test as soon as an intersection is found, this
algorithm exploits the massively parallelism of GPUs to process several fragments together.
Furthermore, a ray could consist of hundreds of fragments, hence it is impractical to perform
linear search where the first intersection point could lie somewhere between the last fragments.

Certainly, occluded geometry will be ignored because depth buffer only stores surfaces visible
to the eye. This could easily introduce false results and artifacts. The technique employs
depth peeling to capture multiple depth layers. The paper suggests that 8 layers of depth
are sufficient.

Figure 2.15: A scenario where even 8 depth layers are not able to store the green sphere. The
testing then incorrectly detects red square at the top to be the first collision between the yellow ray
and the geometry.

One of this technique major drawbacks is that in the scenes with high number of depth

Chapter 2. Related works 17

layers, the suggested depth peeling method may fail to capture many objects even those they
are close to the eye, see figure 2.15. Moreover, depth peeling requires rendering the scene
multiple times, which could be a bottleneck in complex scenes having too many triangles.

2.3.2.2 Multi-Image Based Photon Tracing for Interactive Global Illumination
of Dynamic Scenes

Figure 2.16: Computing intersection by iterations in image-space. The first guess is point A
obtained from the direction of the ray. After one iteration, approximated intersection B’ is obtained,
then C’ after next iteration, and so on. Courtesy of Yao et al. [YWC+10].

Yao et al. [YWC+10] presented a multi-image based Photon Mapping which applies Distance
Impostors approach to approximate photon ray-geometry collisions [SKALP05]. As seen
in figure 2.16, suppose we have a Cube Environment Map (EMC) centered at V storing
information of the geometry visible to its center, and a ray ~P = ~x+ d~r which needs to be
traced. First, point A on the ellipse’s surface is obtained by shooting a ray from V along
direction ~r. Now, suppose a plane passing through A and perpendicular to ~r intersects ~P at
B. By sampling the EMC along direction

−−→
V B, we have point B’. Next step is finding the

intersection C between ~P and the plane passing through A, B’, perpendicular to the plane
containing A, ~x and V. Again, C’ is obtained by sampling along the direction

−−→
V C. The

process continues iteratively using point B’ and C’ to converge to the accurate intersection
solution. In their experiments, 3 to 5 iterations are sufficient to retrieve accurate result.

If there was only one EMC, the technique would produce false positive solution similar to
[KBW06], as an result of occluded geometry (figure 2.17). Thus, they employ multiple EMCs,
each one covers a part of the scene. As finding a minimal set of EMCs covering an entire
scene is an NP-hard set-covering problem, a heuristic method is applied to find a possible set
of k EMCs providing maximal scene coverage. Denote this set by C, which is initialized to be
empty. First, a group of 30-50 uniform randomized points are distributed around the scene,
denoted by U. These points are candidate centers of EMCs. For every EMC v ∈ U - C, the
area of visible surfaces to v, but invisible to all EMCs in C is computed. v having maximum
new covered area is chosen and added to C. The process continues iteratively until k EMCs

Chapter 2. Related works 18

are found. To support dynamic scenes, the technique updates the set C progressively every
5 frames to choose a new v having largest new coverage and removes an existing EMC in C
covering smallest area.

Figure 2.17: Wrong intersection point due to occluded geometry.

During the final step, in contrast with locating nearest photons, an opposite way is applied:
each photon is splatted to the screen by drawing a 2D disk centered at its location. The
energy is scattered to screen-space pixels falling within this disk, and additively accumulated
with power from other photons.

In the implementation, to record the visible geometry at seen from an EMC, the scene is
rendered into 6 faces of the cube map, similar to point light shadow mapping method. For
reducing processing time, these EMCs are rendered at very low resolution (usually 32x32x6).
The following process is implemented in order to calculate the area of surfaces visible to
that EMC but invisible to C: Every rendered pixel will be test against all EMCs of the
set C using standard shadow mapping technique. Only those in shadow region of C will
be considered. These pixels’ areas will be projected back to world space and summed up
together, resulting in the total new covered area of that EMC with respect to C.

While the ray testing method using multiple EMCs of this algorithm is fast and independent
of scene complexity, highly complex scenes would require dozen of EMCs to achieve good
scene coverage. In addition, high polygon count has a big impact on the performance of
EMC recording step which renders the scene repeatedly, 6 times for each EMC. As a result,
this step is only performed progressively instead of updating every frame, thus restricting the
applicable scenes to have only smooth movements. Furthermore, since EMCs only contain
low resolution geometry, the ray testing may produce inaccurate results, these errors can
be reduced by increasing number of photons with the expense of decreased performance.
Finally, EMCs selection is a heuristic method, hence some parts of the scene could still be
missed.

Chapter 2. Related works 19

2.3.2.3 Hardware-accelerated global illumination by image-space photon map-
ping

Another image-space method proposed by McGuire in 2009 et al. [ML09]. This technique
utilises both GPU and CPU to implement Photon Mapping. First, RSM is used to store first
bouncing location of photons. The survived ones will be transferred back to CPU to perform
accurate tracing as the classic algorithm. In the final step, similar to splatting method in
[YWC+10], each photon is splatted to the screen by drawing a 3D ellipsoid volume bounding
its location, screen-space pixels within this volume will receive its power.

While this algorithm can achieve highly accurate photon collisions comparable to CPU
methods, its CPU tracing pass can be a bottleneck in complex scenes. In addition, space
partitioning data structures such as kd-tree is precomputed to accelerate the tracing pass,
which limits the dynamic scenes.

2.4 Other works

Cascaded Light Propagation Volumes (LPV) was introduced by Kaplanyan et al. [KD10]
providing another approach to real-time GI. They inject VPLs to a coarse 3D grid, which
contains the whole scene, to form a volume light at each grid’s cell. The volume light’s radiance
distribution is approximated by low-order Spherical Harmonic (SH), so only low frequency
lighting is supported. Radiance transfers are implemented by propagating iteratively within
the grid. At each step, light is transferred from a cell to its 6 adjacent cells taking into
account the occlusions by probability method. The result of all iterations represents the
lighting distribution in the scene. The volume lights then contribute lighting to surface points
within their cells. While this method can achieve plausible GI in high frame rate without
pre-computation, it is only suitable for diffuse scenes. Moreover, indirect visibility between
elements inside a cell is ignored, and artifacts occur due to coarse discrete representation of
indirect lighting.

Recently, more and more attentions has been attracted to voxel-based GI. Crassin et al.
[CNS+11] introduced their Voxel Cone Tracing method which is capable of glossy indirect
lighting in real-time. First, the scene geometry is encoded in a texture representing a Sparse
Voxel Octree. Irradiance from light sources is then injected into leaves nodes of the octree,
then downsampled for the lower levels nodes. Finally, to shade a surface point, the method
approximates ray tracing by using a cone representing a group of rays to be traced together,
then steps along this cone, performing texture lookup on the Octree. Despite not being a
completely accurate solution, the method achieves visual pleasing diffuse and glossy effects
in real-time. However, Octree takes a large amount of time to construct, thus the majority

Chapter 2. Related works 20

parts of the scene are static and their octree components are pre-computed. Furthermore,
the tree consumes a lot of memory, even up to 1GB of texture in their implementation.

Prutkin et al. [PKD12] proposed a RSM clustering algorithm to reduce number of VPLs.
The technique is based on k-mean clustering and able to reduce pixels in RSM to few
hundreds/thousands of area lights, while keeping good temporal coherence, behaving well
under sudden changes of lighting. Moreover, the technique has little overhead, thus can
be included in the existing RSM-based rendering frameworks without having noticeable
degraded performance. Nevertheless, their method only works on diffuse surfaces.

Recently, Lensing et al. [LB13] presented an efficient shading method which greatly reduces
the number of surface points to be shaded during VPLs gathering step. Their motivation is
similar to Multi-resolution method [NW09], however the work in [NW09] reduces number
of surface points on screen-space while this technique does the same thing on object space.
During pre-processing step, a sparse set of points called light probes are chosen randomly
on a mesh’s triangles, each point also has a list of vertices that it influences, similar to
skeleton bones used in animation systems. These light probes approximately represent
the mesh’s geometry and indirect lighting is calculated on them instead of the G-buffer’s
pixels. During final step, a mesh’s vertex is illuminated by weighted averaging its influencing
light probes’ illuminations. This technique appears to have better performance than the
Multi-resolution method, especially when number of VPLs increases. However, lighting
quality heavily depends on the preprocessing step and geometry complexity. Moreover, only
diffuse surfaces are supported and indirect visibilities are not considered.

Chapter 3
The hybrid technique

3.1 Overview

Figure 3.1: Overview of the method.

Figure 3.1 provides an overview of our method. We combine image-space Instant Radiosity
with image-space Photon Mapping to render one-bounce diffuse indirect lighting and caustics.
Image-space visibility check is used to trace photons to build the Caustics Photon Map. As
discussed in the first chapter, it is possible to use photons to render diffuse inter-reflections,
however, this requires a large amount of photons to avoid splotches. In this aspect, VPLs

21

Chapter 3. The hybrid technique 22

are more superior. We use RSM to obtain both first-bounce VPLs and photons since they
are similarly created by shooting particles from the light source. Observe from equation 2.6
that direct lighting, diffuse indirect reflections and caustics terms are independent, thus they
can be computed separately. Our method can be divided into three main steps. First, direct
illumination (including shadow) is calculated as normal non-GI rendering processes. Second,
using an Instant Radiosity method, VPLs’ contributions are gathered to the multi-resolution
layers. These layer’s results are then interpolated to produce diffuse indirect illumination.
Third, a Photon Mapping technique traces those photons emitted from the light source,
reflected on specular objects, arriving at diffuse surfaces and spreading their energy to
nearby points. This results in caustic irradiance. Finally, the outcomes of the three steps
are combined to produce the final image. The remainder of this chapter will give detailed
explanations for the two latter steps. The technique mentions only one light source, but the
concepts can easily be extended to multiple light sources.

3.2 Diffuse inter-reflections using Instant Radiosity

3.2.1 VPLs sampling

VPLs are stored in RSM, which is rendered from light source’s perspective similar to shadow
maps. In spot light and directional light cases, RSM is a set of single sided textures. One
for positions, one for normals of the surface points that the VPLs are created, and one for
reflected flux. For point light sources, RSM can be 6 sides of a Cube Map textures or 2 sides
of Paraboloid Mapped textures. To save memory, the positions and normals can be stored
in half precision floating point textures.

Sampling a pixel in RSM results in position, normal, and reflected flux of a VPL. Certainly,
using every VPL pixels for gathering step is impractical for real-time rendering, hence, only
a subset of them are extracted by a random sampling method. For point light source, a grid
sampling method can be used. Suppose we need to sample N x N number of VPLs on one
side of Cube Map RSM. First, divide the texture into a grid of N x N cells, then for each cell,
generate a pair of uniform variables (x,y) which define a point inside that cell. These points are
used as sampling positions of VPLs (figure 3.2(a)). Directional light can use the same sampling
method. A spot light source, however, has a little different pattern, since its light forms a cone
shape, every VPL will reside in a circle within RSM (figure 3.2(c)). Therefore, we employs
a circle sampling method for this type of light, which increases the density proportional
to distance to the circle’s center (figure 3.2(b)). Let ξ1 & ξ2 be uniform random variables
between [0,1]. A sampling position (u,v) on RSM is obtained by the following formula:

u = 0.5 + 0.5
√
ξ1 cos(2π ξ2); v = 0.5 + 0.5

√
ξ1 sin(2π ξ2)

Chapter 3. The hybrid technique 23

(a) (b) (c)

Figure 3.2: From left to right: VPL’s grid sampling, circle sampling and RSM from a spot light.

The sampling pattern is initialized at loading time and used for the rest of the application’s
life time. In order to optimize GPU’s cache coherent during gathering step, VPLs are
pre-sampled each frame and stored in an N x N texture before gathering. This avoids texture
reading from incoherent locations in RSM.

3.2.2 Multi-resolution shading

For diffuse indirect lighting, we utilises the multi-resolution shading approach introduced in
[NW09]. As our method computes diffuse and caustics in separate passes, this step has to
be as fast as possible to leave a sufficient amount of time for the latter computation.

3.2.2.1 Min-max mipmap

Recall that this approach requires discontinuity information to correctly split the screen-space
into regions. To do this, a min-max mipmap is used, which store min & max depth values at
each level. The highest resolution mipmap level is obtained by reading linear depth value
from G-buffer (the linear depth is distance to camera). The next level is generated by halving
the resolution of previous step, calculating for each output the minimum and maximum
values of 4 input pixels from higher level. Reading a pixel in the min-max mipmap gives the
min & max depth of corresponding screen-space region. Depth discontinuity is detected if
the region’s min and max values differ by a value greater than a pre-defined threshold.

Surface normal variance within a region can also be defined in similar fashion. However, the
min-max mipmap instead stores 3 sets of min and max values, one for each coordinate of the
surface normal vector. If the difference between the min and max of any component exceeds
a similar threshold, then normal discontinuity is determined.

Chapter 3. The hybrid technique 24

3.2.2.2 Multi-resolution shading regions

Shading every pixels in screen-space with hundreds to thousands of VPLs is a very expensive
process. Given the low-frequency nature of diffuse reflections, lighting varies quite slowly
between adjacent pixels on a smooth surface. Therefore, it is more efficient to shade these
smooth surfaces at low resolution, then interpolate the results for the higher resolution pixels.

The multi-resolution approach divides screen-space into several regions at various resolutions.
For instance, the resolution of screen-space frame buffer is 512x512, then every finest level
region contains exactly one pixel, while the 4th coarser level ones enclose 32x32 pixels each.
One possible splitting strategy is a bottom-up process which initializes at the coarsest level,
then at each refinement step, every region in which there exist depth or normal discontinuities
is subdivided into 4 smaller regions. One example of the completed screen-space clustering
can be seen in figure 2.10 on page 13. The better strategy [NSW09] stems from the fact that
each refinement step does not actually depend on prior step, thus can be done in parallel. In
fact, a region is valid if it has no discontinuity but the coarser one containing it does. This
improved strategy is describes by the pseudo-code 3.1.

Algorithm 3.1: Multi-resolution regions splitting.

1 R ← list of possible regions

2 for every region r in R do

3 i ← level of r

4 if discontinuity(r, i) is true then

5 continue // region is invalid

6 end

7 if discontinuity(r, i + 1) is false then

8 continue // coarser region is valid

9 end

10 setValid(r) // mark as valid region

11 end

Stencil feature of graphics hardware provides an efficient way to implement this shading
technique. First, several layers at different resolutions are provided, where a pixel represents
a region at respective resolution. The layers are flattened into a big 2D image (figure 3.3(a)).
To do the splitting process, a full-screen quad is rendered onto this image, in fragment shader,
the pixel corresponds to the valid region sets a flag in the stencil buffer.

In the gathering step, we draws a full-screen quad onto the flattened image again, only pixels
that pass the stencil test will be shaded by the VPLs (figure 3.3(b)). The irradiance at a
pixel/region due to contribution from a VPL is calculated as follows:

Chapter 3. The hybrid technique 25

Ex = Φl
max(0, |nx · ˆvl,x|) max(0, |nl · ˆvl,x|)

|vl,x|2 + ε

Where Φl, nl are reflected flux and surface normal of the VPL, respectively. nx is the normal
of the region, which is obtained from G-buffer. vl,x is vector from the region’s position to
the VPL’s. ε is small value added to avoid division by zero.

(a) (b)

Figure 3.3: From left to right: Stencil marked multi-resolution regions and their shaded result.
The white pixels on the left image correspond to the valid regions.

Finally, the shaded layers are interpolated by a bottom-up procedure beginning from coarsest
level. At each step, a pixel containing illumination is bi-linear interpolated with its 8 nearest
neighbours of the same resolution, which are either originally rendered in the gathering step
or upsampled from the lower resolution (figure 3.4). The pseudo-code 3.2 further explains
this procedure.

Figure 3.4: Multi-resolution interpolation process.

Chapter 3. The hybrid technique 26

Algorithm 3.2: Multi-resolution interpolation.

1 for every level l do

2 for every pixel p in l do

// 3x3 input pixels

3 interpolated[9] ← interpolated from previous step

4 rendered[9] ← rendered in gathering step

5 weight[9] ← interpolating weight

6 p ← 0

7 totalWeight ← 0

8 for i = 0 to 8 do

9 if hasData(interpolated[i]) or hasData(rendered[i]) then

10 totalWeight += weight[i]

11 p += weight[i] * (interpolated[i] + rendered[i])

12 end

13 end

14 p /= totalWeight

15 end

16 end

3.3 Caustics using Photon Mapping

3.3.1 Photons’ initial bounces

3.3.1.1 Photons sampling

The photons’ initial intersections are also obtained from RSM. In this step, instead of viewing
pixels as VPLs, they are considered photons’ first hit points. Since only caustic photons are
concerned, we need to identify which RSM pixels are on specular surfaces. To do this, during
RSM rendering step, a special mask texture is generated, in which a pixel is set to one if its
corresponding RSM’s pixel has specular material, otherwise it is set to zero. This gives a
way to filter out caustic photons from RSM. The number of photons can easily be retrieved
by inspecting the percentage of marked pixels, which is stored in the lowest level of the mask
texture’s mipmap(see figure 3.5 for more details). This mipmap is generated by the graphics
hardware automatically. Since the number of photons in RSM could become intractable, one
additional step is finding a subset of them to sample. Using an uniform sampling method

Chapter 3. The hybrid technique 27

Figure 3.5: The mipmap of a 4x4 mask texture corresponding to 4x4 RSM. Interestingly, hardware
generated mipmap process computes a lower level pixel by averaging its 4 higher level pixels. Thus,
lowest mipmap level will actually contain the percentage of specular pixels in highest resolution RSM,
which is 0.5625, so the number of specular pixels is 0.5625 * 16 = 9.

(a) (b) (c) (d)

Figure 3.6: From left to right: Uniform sampling positions, our sampling method’s positions, mask
texture, and RSM. The mask texture is represented in color mode, where black and white correspond
to zero and one respectively.

could result in sampling points covering the objects’ shapes unevenly (the ring object in
figure 3.6(a)). To address this, we propose a simple sampling method using down-sampled
mipmap level of the mask texture. Because GPU generates mipmap using box-filtering, a
generated pixel’s color is one only if its 4 higher level pixels’ are also one (figure 3.5). Thus,
the number of one-marked pixels in a level (denoted by s(l)) can be guessed by the following
formula:

s(l) ≤ smax(l) =
s(l − 1)

4

Suppose the number of marked pixels in highest resolution of RSM is M, then for a mipmap

level l, smax(l) =
M

4l
. Assume that we would like to sample no more than N photons (N

< M), the task becomes as simple as finding l such that smax(l) ≤ N , then sampling those
photons from RSM using one-marked positions in the l mipmap level(figure 3.6(b)).

Chapter 3. The hybrid technique 28

3.3.1.2 Photons’ reflections

Upon retrieving the initial hit points, as traditional Photon Mapping, the algorithm will
decide which type of reflection or absorption a photon will have. Let the diffuse and
specular reflection coefficients of a surface point be (dr, dg, db) and (sr, sg, sb) respectively. A
probability for reflection can be computed as:

Pr = max(dr + sr, dg + sg, db + sb)

The probability of diffuse reflection is:

Pd =
dr + dg + db

dr + dg + db + sr + sg + sb
Pr

The probability of specular reflection is:
Ps = Pr − Pd

With these probabilities and an uniform random variable ξ ∈ [0, 1], the type of reflection or
absorption will be chosen as follows:

ξ ∈ [0, Pd] =⇒ diffuse reflection
ξ ∈ (Pd, Pd + Ps] =⇒ specular reflection
ξ ∈ (Pd + Ps, 1] =⇒ absorption

Only specular reflected photons will be traced in our technique. Once a photon is specular
reflected, its power needs to be adjusted to account for the probability of survival:

Φref,r = Φinc,rsr/Ps

Φref,g = Φinc,gsg/Ps

Φref,b = Φinc,bsb/Ps

Where Φref is the reflected power, and Φinc is the incident power.

Next, the photon will be reflected in random direction according to its collided surface’s
BRDF. For Phong material, the reflection’s directions are distributed close to the mirror
reflection vector. Let (θ, φ) be the spherical coordinates of the random direction (figure 3.7),
α be the Phong exponent of the material, and ξ1 & ξ2 be uniform randomized values within
[0,1]. (θ, φ) can be calculated as:

θ = arccos(ξ

1

α+ 1
1)

φ = 2πξ2

This gives Cartesian reflection vector ~r=(sin θ cosφ, sin θ sinφ, cos θ) in mirror reflection
space. To transform it back to world space, we need to define the mirror reflection space.
This space has mirror reflection vector ~rmirror as its z-axis, the remaining two axes can be

Chapter 3. The hybrid technique 29

Figure 3.7: Random reflection direction (yellow) can be expressed in (θ, φ) which is a spherical
coordinates in mirror reflection space.

obtained by the pseudo-code 3.3.

Algorithm 3.3: Mirror reflection space’s axes calculation.

1
−−→
Oz′ ← ~rmirror // reflection space’s z-axis

2
−−→
Ox′,

−−→
Oy′ // reflection space’s x and y-axis

3
−→
Ox,
−→
Oy,
−→
Oz // world space’s x, y and z-axis

4 if
−−→
Oz′ is parallel to

−→
Oy then

5
−−→
Ox′ =

−→
Ox

6
−−→
Oy′ = -

−→
Oz

7 end

8 else

9
−−→
Ox′ = normalize(cross(

−→
Oy,
−−→
Oz′))

10
−−→
Oy′ = cross(

−−→
Oz′,

−−→
Ox′)

11 end

With
−−→
Ox′,

−−→
Oy′,

−−→
Oz′, reflection vector can be transformed back to world space by the following

formula:

~rworld =


−−→
Ox′x

−−→
Oy′x

−−→
Oz′x

−−→
Ox′y

−−→
Oy′y

−−→
Oz′y

−−→
Ox′z

−−→
Oy′z

−−→
Oz′z




~rx

~ry

~rz



Chapter 3. The hybrid technique 30

3.3.2 Photon tracing on screen-space

3.3.2.1 Per-pixel linked list

To approximately represent the scene’s geometry, the technique utilises a per-pixel linked list
construction method on Direct3D 11/OpenGL 4-capable GPUs [YHGT10], where there are
multiple fragments in a single pixel, as show in figure 3.8. Each fragment stores depth and
surface normal data of the respective surface point. As a way to save storage space, normal
vector’s data will be stored in spherical coordinates format (2 half precision floats instead of
3 floats).

Figure 3.8: Pixel P1 has a linked list of 4 fragments: F1 & F2 from red object, F3 & F6 from
blue object. Similarly, Pixel P2 has a list of 2 fragments: F4 & F5 both from blue object.

To construct these linked lists, we first pre-allocate a global buffer on the GPU. This buffer
will be used as the storage for the lists’ nodes’ data. The node data is defined as follows:

struct FragmentNode {
f loat depth ;
int normal ; // 16 b i t f l o a t s ∗ 2
int next ; // po in t e r to the next node .
//a va lue o f −1 means the re i s no next node

} ;

The scene is then drawn to an off-screen frame buffer as usual with depth testing disabled.
However, instead of color, this buffer stores at each pixel a pointer pointing to the head node
of the respective linked list, which is initialized to -1. In fragment shader, the generated
fragment’s data will be inserted to the linked list of the corresponding pixel location (figure
3.9), this procedure is described by the pseudo-code 3.4. The min and max depth values of
every fragment in each linked list will also be stored. Note that we use perspective projection
to capture the scene, so only geometry inside the view frustum is available in the linked list.
Alternative way could be using orthogonal projection with a frustum covering the entire

Chapter 3. The hybrid technique 31

Algorithm 3.4: Per pixel linked list insertion in fragment shader.

Input : p // fragment’s position in screen-space

Input : d // fragment’s depth

Input : n // fragment’s surface normal

Data: buffer // global buffer

Data: head // head pointer buffer

Data: totalFrags // global counter couting total number of fragments

1 newFragNode // node data

2 newFragNode.depth = d

3 newFragNode.normal = n

4 newFragNode.next = head[p] // points to current head node

5 buffer[totalFrags] = newFragNode // store data in global buffer

6 head[p] = totalFrags // new fragment node becomes head node

7 totalFrags = totalFrags+ 1 // increase global counter

scene.

3.3.2.2 Line rasterization

Similar to [KBW06], to trace the reflected photon rays and find their second collision points,
we rendered them as line primitives. The difference is that [KBW06] uses layered depth
images to calculate the intersections, while our technique uses per-pixel linked lists. At each
fragment generated by line rasterization, the fragment shader will search linearly in the
respective linked list, comparing the depth of generated fragment with the depth of every
fragment in the list. If both values differ less than a specific threshold, an intersection point
between the photon ray and scene’s geometry will be stored (see figure 2.14 on page 16).
This procedure is illustrated by the pseudo-code 3.5. The min & max depth values are used
in fragment shader for skipping empty space. Clearly, per-pixel fragment lists is faster to be
generated because they need only one rendering pass compare to multiple passes of multiple
depth layers. Furthermore, the layered depth images will miss some parts of the scene that
are further than the maximum depth layer (figure 2.15 & 4.2(b) on pages 16 & 40), while
fragment lists will not. That is because the depth layer only contains the fragments closest
to the eye and discards the rest, on the other hand, our method’s linked lists keep all the
rasterized fragments.

Chapter 3. The hybrid technique 32

Figure 3.9: Linked list construction. Yellow object is rasterized first, the red object is second.
The process can capture more than one depth value at overlapped locations between 2 objects. Note:
only "next" pointers are shown in the global buffer, other data’s members such as depth, normal are
omitted.

We store first-bounce photons’ positions and their reflected directions in a vertex buffer.
Geometry shader reads this information and generates line primitives, the interpolated
fragments are passed to fragment shader to perform the intersection test. Similar to
[KBW06], each line has a dedicated row in an off-screen buffer (a texture) to store the list of
its intersections with the scene’s geometry, see figure 3.10. Since textures have limited rows,
not all photons can be traced in one single pass. Hence, the photons tracing will be repeated
until there are no remaining photons left. To eliminate the need for synchronization between
CPU & GPU to let CPU know how many untraced photons left, indirect rendering feature of
modern GPUs, which stores rendering parameters in a GPU buffer, can be utilised. The first
intersection on the row will be the second hit point of the photon with the scene’s geometry.

Because a long ray would generate dozen of fragments, which could become a fill-limited
bottleneck in the system, we instead render the rays at low resolution (commonly 128x128),
the accuracy of the low resolution rays is sufficient for our needs.

Chapter 3. The hybrid technique 33

Figure 3.10: The pink object at the bottom reflects the light from the light source and causes
three caustics rays. These are processed by the geometry shader, which computes the reflected rays
and generates line primitives. The rendering of these lines generates the image shown at the bottom.
Red, green and blue pixels indicate hits with an object, and grey cells indicate fragments that have
been skipped in the fragment shader. White cells are fragments having never been rendered. Courtesy
of Krüger et al. [KBW06].

As seen in figure 3.11, self-intersection error may occur because of discrete nature of pixels.
To overcome this, the intersection will be discarded if the angle between the normal of the
surface point and the ray’s direction is less than 90 degrees, which means the ray is pointing
away from the surface point.

Figure 3.11: Red fragment is wrongly detected as intersection between the reflected ray and the
blue object due to pixelating error.

Figure 3.12 shows that the self-intersection problem can still occur if the object is very thin.
Fortunately, this error is acceptable since the angle between the surface normal and photon’s
ray is very close to 90 degrees, thus having close to zero cosine, therefore the photon’s power
transferred to the surface point is negligible.

Figure 3.12: Inaccurate intersection can still occur on a very thin object which has multiple
surfaces close to each other.

Chapter 3. The hybrid technique 34

Algorithm 3.5: Intersection test using depth linked list in fragment shader.

Input : p // fragment’s position in screen-space

Input : d // fragment’s depth

Output : hit // intersection occurs at this fragment?

Data: buffer // global buffer

Data: head // head pointer buffer

1 idx = head[p]

2 hit = false

3 while idx not equals -1 and hit equals false do

4 fragDepth = buffer[idx].depth

5 if |fragDepth− d| < ε then

6 hit = true

7 end

8 else

9 idx = buffer[idx].next;

10 end

11 end

3.3.2.3 Photon splatting

For the radiance estimation step, we adopt a splatting method similar to [LP03] and
[YWC+10]. Each photon is splatted onto a disk centered at the surface’s hit point and
perpendicular to its normal, see figure 3.13(b). The contribution is added to every pixel
covered by the projection of the disk on the screen and that resides on the same surface.
The disk has a radius h which is defined as h = C

√
A
N , where A is total area of the scene,

N is total number of emitted photons, and C is a variable that controls the bandwidth. C
is defined as C = C0/

√
p, where C0 is a modifiable parameter and p = cosθ/d2 where d is

traveled distance of photon, and θ is incident angle. With these density estimation formulas,
the further the photon travels, the larger the disk becomes.

The photon’s splatting disk is rendered by generating a quad in geometry shader. For each
rasterized fragment of the quad, fragment shader reads world space position from G-buffer
and computes the contribution of the photon to the irradiance of that fragment as follows:

∆E =
Φ κ(d)

πh2

Where Φ is incident power of the photon , d is distance between the fragment and the disk’s

Chapter 3. The hybrid technique 35

center. And κ is a weighting function, which could be defined as:

κ(d) = max(0, 1−
∣∣∣∣dh
∣∣∣∣)

or using Gaussian falloff function which gives a better result:

κ(d) = e
−

(
d

h
)2

2δ

Where δ is a user-defined value controlling the bell shape. For faster computation, the
weighting values can be pre-computed and stored in a 1D texture, then in fragment shader,
κ(d) is obtained by looking up this texture:

κ(d) = tetureFetch(
d

h
)

This contribution is additively blended with the frame buffer which also contains contributions
from other photons.

(a) (b) (c)

Figure 3.13: From left to right: photon incident positions, splatting result without weighting and
with Gaussian weighting.

3.3.2.4 Irradiance sub-sampling

Unfortunately, similar to the tracing pass, the splatting method could become fill-limited,
because of excessive overdraws of the photon disks. Therefore, we perform a final optimization
similar to bilateral upsampling method [SGNS07]. The disks are rendered first onto a
low resolution frame buffer, with its dimension is a quarter of the full resolution. The
low resolution image is then upsampled using position, normal, and depth weights. The
upsampling method is done as follows: First, two versions of G-buffer are generated, one in
full resolution and one in low resolution. Next, a 3x3 box of the low resolution irradiance
buffer, which containing the high resolution pixel, is located. Let ci, xi, ni, di be the irradiance,
screen-space position, world space normal, and depth of the full resolution pixel, c′j , x

′
j , n
′
j , d
′
j

be the respective values of a low resolution pixel within that 3x3 box. Irradiance at full
resolution is calculated by this formula:

ci =
1

w

∑
j c
′
j wj

Chapter 3. The hybrid technique 36

(a) (b)

Figure 3.14: From left to right: Low resolution caustics irradiance and its upsampled result.

Where w =
∑

j wj and wj = wj,x wj,n wj,d.
wj,x is bi-linear weight.
wj,n is normal weight, which is (max(ni · n′j , 0))k, k is a user-defined value.

wj,d is depth weight defined as
1

1 +
∣∣∣di − d′j∣∣∣ .

While achieving good performance gain, this optimization produces blurred results, especially
in the areas of highly detailed surfaces.

Chapter 4
Results

Our experiments are done on a PC with Intel Core i5 650@3.20GHz, NVIDIA Geforce GTX
460, and 4GB of RAM. The implementation uses DirectX 11 with Shader Model 5. RSM
is rendered at 512x512 resolution, while per-pixel linked lists are captured at the same
resolution as the photon ray tracing does (which is either 128x128 or 256x256). Total VPLs
used for diffuse indirect illumination is 256. Random numbers for Photon Mapping are
pre-generated and store in a texture, so every frame will use the same random numbers to
maintain temporal coherent. 20MB memory on the GPU is also pre-allocated for storing
per-pixel linked lists. All test scenes are rendered using one spot light and evaluated with
various settings, such as photon rays’ resolution, number of photons and final image resolution.
Reference images, produced by the off-line method called Stochastic Progressive Photon
Mapping (SPPM) [HJ09], are also provided for comparison.

4.1 Caustic Ring scenes

4.1.1 Simple scene

The scene consist of a ring having specular material within a room. The total triangles count
is 202. Figure 4.1 shows the scene rendered with direct light only (a), with diffuse indirect
lighting (b), with caustics (c) & (d). Figure 4.1(c) renders the photon rays at 128x128
resolution, while Figure 4.1(d) does it at 256x256. We can clearly see that there is not much
difference between the two images. The performance measures are presented in table 4.1.

4.1.2 Occluded ring

This is a variant of the first scene, in which there are 4 walls hiding the ring from the camera
(figure 4.2). There are two platforms, the higher one is where the ring resides. The total
triangles is 214. Figure 4.2(b) shows the occurrence of light leaking if using 4 depth layers to

37

Chapter 4. Results 38

(a) Direct only (b) Diffuse

(c) Caustics (1282) (d) Caustics (2562) (e) SPPM reference (∼ 108 pho-
tons in 2 hours)

Figure 4.1: Simple ring scene.

Table 4.1: Statistics of the simple ring scene.

Diffuse illumination
time(ms)

Caustics illumination
time(ms)

Resolution Caustic

photons

Caustic

ray

resolution

FPS Multi-

resolution

splitting

Multi-

resolution

gather-

ing

Photon

tracing

Photon

splatting

Frame

time(ms)

5122 17021 1282 90 0.087 1 7 0.477 11

5122 17021 2562 54 0.088 1 14 0.270 18

10242 17021 1282 65 0.318 2 7 0.721 15

10242 17021 2562 43 0.318 2 14 1 22

Chapter 4. Results 39

Table 4.2: Statistics of the occluded ring scene.

Diffuse illumination
time(ms)

Caustics illumination
time(ms)

Resolution Caustic

photons

Caustic

ray

resolution

FPS Multi-

resolution

splitting

Multi-

resolution

gather-

ing

Photon

tracing

Photon

splatting

Frame

time(ms)

5122 17021 1282 46 0.089 1 17 0.325 21

5122 17021 2562 26 0.089 1 33 0.346 37

10242 17021 1282 39 0.320 2 17 0.325 25

10242 17021 2562 25 0.320 2 33 0.346 38

Table 4.3: Statistics of the bunnies scene.

Diffuse illumination
time(ms)

Caustics illumination
time(ms)

Resolution Caustic

photons

Caustic

ray

resolution

FPS Multi-

resolution

splitting

Multi-

resolution

gather-

ing

Photon

tracing

Photon

splatting

Frame

time(ms)

5122 17021 1282 57 0.090 1 11 0.500 17

5122 17021 2562 33 0.090 1 23 0.872 30

10242 17021 1282 43 0.322 3 11 1 25

10242 17021 2562 28 0.322 3 23 1 35

trace the photons since the ring’s platform cannot be captured by the depth layers. Figure
4.2(c) & (d) demonstrates the correct result when using per-pixel linked lists. See table 4.2
for evaluated results.

4.1.3 Three bunnies and a ring

The scene has 3 bunnies and a caustic ring (figure 4.3). Total triangles count is 208619. The
purpose of this scene is testing the accuracy and performance of the Photon Mapping step
when number of triangles is high. See table 4.3 for evaluated results.

Chapter 4. Results 40

(a) (b)

(c) (d)

Figure 4.2: Occluded ring scene. The image (b) shows light leaking due to missing of the ring’s
platform in the depth layers. The image (d) shows the correct photons’ locations using per-pixel
linked list tracing method.

4.2 Water room

This scene comprises dynamic water at the bottom of a room. There are 1932 triangles.
Figure 4.4(e) shows the accuracy of Photon tracing at 2562 resolution, especially on surfaces
viewed at a steep angle. 1282 tracing resolution produces some aliased caustics shapes.
Fortunately, these errors can be reduced by increasing photon splatting size, albeit having
blurred result. Similarly, decreasing number of photons greatly increases the performance,
but also leading to blurred image (figure 4.4(a) & (b)).

Chapter 4. Results 41

(a) Direct (b) Diffuse (c) Caustics without bunnies

(d) Caustics (e) SPPM reference (∼ 108 photons in 8 hours)

Figure 4.3: Bunnies scene.

4.3 Crytek’s Sponza

This is the most complex test scene, having 261989 triangles and high depth complexity.
In order to test the caustics effect, we have modified the original model from Crytek to
add several water pools at various locations. Figure 4.6 and 4.8 both are tested with low,
medium and high number of photons, where higher number is about four times as many as
lower number. Table 4.5 shows that Photon tracing performance almost scales linearly with
the number of photons and with the tracing resolution.

Chapter 4. Results 42

(a) 2313 photons (b) 9417 photons

(c) 38146 photons (d) SPPM reference (∼ 108 photons in 2
hours)

(e) Results of 1282 and 2562 Photon tracing resolution

Figure 4.4: Water scene.

Chapter 4. Results 43

Table 4.4: Statistics of the water room scene.

Diffuse illumination
time(ms)

Caustics illumination
time(ms)

Figure Resolution Caustic

photons

Caustic

ray

resolution

FPS Multi-

resolution

splitting

Multi-

resolution

gather-

ing

Photon

tracing

Photon

splatting

Frame

time(ms)

4.4(a)
10242 2313 1282 68 0.320 4 2 2 14

10242 2313 2562 56 0.320 4 5 2 18

4.4(b)
10242 9417 1282 45 0.320 4 10 2 22

10242 9417 2562 31 0.320 4 19 2 31

4.4(c)

5122 38146 1282 20 0.089 2 42 0.748 49

5122 38146 2562 12 0.089 2 79 0.719 85

10242 38146 1282 18 0.320 4 42 3 55

10242 38146 2562 11 0.320 4 79 2 92

4.5(a)
10242 16384 1282 40 0.320 4 13 2 25

10242 16384 2562 26 0.320 4 26 2 38

(a) 16384 photons (b) SPPM reference (∼ 108 photons in 2
hours)

Figure 4.5: Water scene 2.

Chapter 4. Results 44

(a) Direct (b) Diffuse (c) 1707 photons (d) 6954 photons

(e) 28111 photons (f) SPPM reference (∼ 108 photons in 8 hours)

(g) Diffuse (h) 28111 photons

Figure 4.6: Sponze scene 1.

Chapter 4. Results 45

(a) Direct (b) Diffuse

(c) Caustics (d) SPPM reference (∼ 108 photons in 8 hours)

(e) Direct (f) Caustics

Figure 4.7: Sponze scene 2.

Chapter 4. Results 46

Table 4.5: Statistics of the Sponza scenes.

Diffuse illumination
time(ms)

Caustics illumination
time(ms)

Figure Resolution Caustic

photons

Caustic

ray

resolution

FPS Multi-

resolution

splitting

Multi-

resolution

gather-

ing

Photon

tracing

Photon

splatting

Frame

time(ms)

4.6(c)
10242 1707 1282 66 0.320 3 2 2 15

10242 1707 2562 52 0.320 3 5 2 19

4.6(d)
10242 6954 1282 43 0.320 3 10 2 22

10242 6954 2562 28 0.320 3 21 2 35

4.6(e)

5122 28111 1282 19 0.089 2 43 0.760 50

5122 28111 2562 11 0.089 2 85 0.760 92

10242 28111 1282 17 0.319 3 43 2 56

10242 28111 2562 10 0.319 3 85 3 99

4.7(c)

5122 15049 1282 31 0.091 4 22 0.145 31

5122 15049 2562 18 0.091 4 44 0.593 54

10242 15049 1282 23 0.328 10 22 0.859 41

10242 15049 2562 15 0.328 10 44 0.924 65

4.8(c)
10242 1500 1282 52 0.323 8 2 1 19

10242 1500 2562 46 0.323 8 4 1 22

4.8(d)
10242 6106 1282 38 0.323 8 8 2 26

10242 6106 2562 28 0.323 8 16 2 35

4.8(e)

5122 24726 1282 23 0.091 3 34 0.929 42

5122 24726 2562 13 0.091 3 67 0.929 76

10242 24726 1282 19 0.323 8 34 2 52

10242 24726 2562 11 0.323 8 67 2 86

Chapter 4. Results 47

(a) Direct (b) Diffuse

(c) 1500 photons (d) 6106 photons

(e) 24726 photons (f) SPPM reference (∼ 108 photons in 8 hours)

Figure 4.8: Sponze scene 3.

Chapter 5
Conclusion

In summary, our method can achieve plausible diffuse indirect illumination and caustics in
interactive to real-time frame rate, depends on the scene and number of photons. The method
makes full use of the rasterization power of modern GPUs and supports fully dynamic scenes.
Thus, it can be integrated easily into existing rasterization frameworks. Without a doubt,
the most expensive step is Photon tracing. That is because the intersection test has to be
performed on many fragments of the rasterized rays. Nevertheless, the tracing performance
depends more on rasterization’s resolution rather than on the scene’s number of polygons.
Hardware’s early z-rejection mechanism can help skip a lot of fragments in the empty spaces,
or spaces with min depth smaller than the fragment’s depth. Furthermore, we can rasterize
the rays at low resolution without significant loss of the accuracy.

5.1 Limitations and future improvements

In our implementation, both techniques for diffuse and caustics are screen-space based, hence
inconsistencies may occur between successive frames because they are dependent on viewing
direction. Alternative way to capture the linked lists could be using a fixed projection’s
direction, instead of the camera adaptive one. Another limitation is that linked lists are
only generated from the geometry within the projection’s frustum. Thus, certain parts of
the scene such as those behind the camera, if we use camera adaptive projection, could be
omitted. One possible solution is using a big frustum containing the whole scene, or only
nearby objects around the camera, the latter option is better because of limited memory on
the GPU. Limiting the linked list to only contain nearby objects also helps reduce the depth
complexity, which in turn benefits the intersection test.

Our method does not consider diffuse indirect occlusion. However, it is usually hard to notice
because in real-life, diffuse light scatters and bounces all over the scene. If diffuse indirect
shadow is desired, we can integrate the Imperfect Shadow Map method [RGK+08], albeit
having reduced performance, or using a more efficient, but less physically correct method -

48

Chapter 5. Conclusion 49

Light Propagation Volumes [KD10].

Currently, medium to high frequency glossy indirect lighting is not supported, since our
method only traces rays from light source while glossy reflections are view dependent and
thus require tracing rays from the camera. Not only that, number the rays required to trace
is much larger than the number of Caustics rays because in order to estimate the Rendering
Equation integral at each shaded pixel, the reversed tracing procedure needs to sample more
than one ray. Consider that the forward tracing step in our method already takes a toll on
the performance, glossy effects are hard to achieve in real-time frame rate.

Finally, in the future we would like to investigate a hierarchical tracing method, in which
low resolution photon rays are rendered first to remove those portions that are sure to not
intersect any fragments in the linked lists. Then the remaining portions are rasterized at
higher resolution to do fine-grained intersection tests.

References

[CNS+11] Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and Elmar Eisemann.
Interactive indirect illumination using voxel-based cone tracing: An insight. In
ACM SIGGRAPH 2011 Talks, SIGGRAPH ’11, pages 20:1–20:1, New York, NY,
USA, 2011. ACM.

[DS05] Carsten Dachsbacher and Marc Stamminger. Reflective shadow maps. In
Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games, I3D
’05, pages 203–231, New York, NY, USA, 2005. ACM.

[HJ09] Toshiya Hachisuka and Henrik Wann Jensen. Stochastic progressive photon
mapping. In ACM SIGGRAPH Asia 2009 Papers, SIGGRAPH Asia ’09, pages
141:1–141:8, New York, NY, USA, 2009. ACM.

[Jen96] Henrik Wann Jensen. Global illumination using photon maps. In Proceedings of
the Eurographics Workshop on Rendering Techniques ’96, pages 21–30, London,
UK, UK, 1996. Springer-Verlag.

[KBW06] Jens Krüger, Kai Bürger, and Rüdiger Westermann. Interactive screen-space
accurate photon tracing on gpus. In Proceedings of the 17th Eurographics
Conference on Rendering Techniques, EGSR’06, pages 319–329, Aire-la-Ville,
Switzerland, Switzerland, 2006. Eurographics Association.

[KD10] Anton Kaplanyan and Carsten Dachsbacher. Cascaded light propagation volumes
for real-time indirect illumination. In Proceedings of the 2010 ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games, I3D ’10, pages 99–107, New
York, NY, USA, 2010. ACM.

[Kel97] Alexander Keller. Instant radiosity. In Proceedings of the 24th Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH ’97, pages 49–56,
New York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co.

[LB13] Philipp Lensing and Wolfgang Broll. Efficient shading of indirect illumination
applying reflective shadow maps. In Proceedings of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games, I3D ’13, pages 95–102, New
York, NY, USA, 2013. ACM.

50

References 51

[LP03] Fabien Lavignotte and Mathias Paulin. Scalable photon splatting for global
illumination. In Proceedings of the 1st International Conference on Com-
puter Graphics and Interactive Techniques in Australasia and South East Asia,
GRAPHITE ’03, pages 203–ff, New York, NY, USA, 2003. ACM.

[MKC07] Ricardo Marroquim, Martin Kraus, and Paulo Roma Cavalcanti. Efficient
point-based rendering using image reconstruction. In Mario Botsch, Renato
Pajarola, Baoquan Chen, and Matthias Zwicker, editors, SPBG, pages 101–108.
Eurographics Association, 2007.

[ML09] Morgan McGuire and David Luebke. Hardware-accelerated global illumination
by image space photon mapping. In Proceedings of the Conference on High
Performance Graphics 2009, HPG ’09, pages 77–89, New York, NY, USA, 2009.
ACM.

[NSW09] Greg Nichols, Jeremy Shopf, and Chris Wyman. Hierarchical image-space
radiosity for interactive global illumination. In Proceedings of the Twentieth
Eurographics Conference on Rendering, EGSR’09, pages 1141–1149, Aire-la-Ville,
Switzerland, Switzerland, 2009. Eurographics Association.

[NW09] Greg Nichols and Chris Wyman. Multiresolution splatting for indirect illumina-
tion. In Proceedings of the 2009 Symposium on Interactive 3D Graphics and
Games, I3D ’09, pages 83–90, New York, NY, USA, 2009. ACM.

[PKD12] Roman Prutkin, Anton Kaplanyan, and Carsten Dachsbacher. Reflective shadow
map clustering for real-time global illumination. In Carlos AndÃžjar and
Enrico Puppo, editors, Eurographics (Short Papers), pages 9–12. Eurographics
Association, 2012.

[RGK+08] T. Ritschel, T. Grosch, M. H. Kim, H.-P. Seidel, C. Dachsbacher, and J. Kautz.
Imperfect shadow maps for efficient computation of indirect illumination. ACM
Trans. Graph., 27(5):129:1–129:8, December 2008.

[SGNS07] Peter-Pike Sloan, Naga K. Govindaraju, Derek Nowrouzezahrai, and John Sny-
der. Image-based proxy accumulation for real-time soft global illumination. In
Proceedings of the 15th Pacific Conference on Computer Graphics and Appli-
cations, PG ’07, pages 97–105, Washington, DC, USA, 2007. IEEE Computer
Society.

[SKALP05] LÃąszlÃş Szirmay-Kalos, BarnabÃąs AszÃşdi, IstvÃąn LazÃąnyi, and MÃą-
tyÃąs Premecz. Approximate ray-tracing on the gpu with distance impostors.
Comput. Graph. Forum, 24(3):695–704, 2005.

References 52

[SKP07] M.A Shah, J. Konttinen, and S. Pattanaik. Caustics mapping: An image-space
technique for real-time caustics. Visualization and Computer Graphics, IEEE
Transactions on, 13(2):272–280, March 2007.

[TO12] Yusuke Tokuyoshi and Shinji Ogaki. Real-time bidirectional path tracing via
rasterization. In Proceedings of the ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games, I3D ’12, pages 183–190, New York, NY, USA, 2012.
ACM.

[YHGT10] Jason C. Yang, Justin Hensley, Holger Grün, and Nicolas Thibieroz. Real-
time concurrent linked list construction on the gpu. In Proceedings of the 21st
Eurographics Conference on Rendering, EGSR’10, pages 1297–1304, Aire-la-Ville,
Switzerland, Switzerland, 2010. Eurographics Association.

[YWC+10] Chunhui Yao, Bin Wang, Bin Chan, Junhai Yong, and Jean-Claude Paul. Multi-
image based photon tracing for interactive global illumination of dynamic scenes.
In Proceedings of the 21st Eurographics Conference on Rendering, EGSR’10,
pages 1315–1324, Aire-la-Ville, Switzerland, Switzerland, 2010. Eurographics
Association.

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Introduction
	Dissertation's structure

	Related works
	The Rendering Equation
	Instant Radiosity and Virtual Point Lights
	Instant Radiosity
	Reflective Shadow Maps
	Imperfect Shadow Maps
	Multi-resolution splatting for indirect illumination

	Photon Mapping
	Original Photon Mapping algorithm
	Image-space Photon Mapping

	Other works

	The hybrid technique
	Overview
	Diffuse inter-reflections using Instant Radiosity
	VPLs sampling
	Multi-resolution shading

	Caustics using Photon Mapping
	Photons' initial bounces
	Photon tracing on screen-space

	Results
	Caustic Ring scenes
	Simple scene
	Occluded ring
	Three bunnies and a ring

	Water room
	Crytek's Sponza

	Conclusion
	Limitations and future improvements

	References

